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Variational method for finding periodic orbits in a general flow

Yueheng Lan* and Predrag Cvitanovic´†
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A variational principle is proposed and implemented for determining unstable periodic orbits of flows as
well as unstable spatiotemporally periodic solutions of extended systems. An initial loop approximating a
periodic solution is evolved in the space of loops toward a true periodic solution by a minimization of local
errors along the loop. The ‘‘Newton descent’’ partial differential equation that governs this evolution is an
infinitesimal step version of the damped Newton-Raphson iteration. The feasibility of the method is demon-
strated by its application to the He´non-Heiles system, the circular restricted three-body problem, and the
Kuramoto-Sivashinsky system in a weakly turbulent regime.
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I. INTRODUCTION

The periodic orbit theory of classical and quantum cha
@1,2# is one of the major advances in the study of long-tim
behavior of chaotic dynamical systems. The theory expre
all long-time averages over chaotic dynamics in terms
cycle expansions@3#, sums over periodic orbits~cycles! or-
dered hierarchically according to the orbit length, stability,
action. If the symbolic dynamics is known, and the flow
hyperbolic, longer cycles are shadowed by shorter ones,
cycle expansions converge exponentially or even supere
nentially with the cycle length@4#.

A variety of methods for determining all periodic orbi
up to a given length have been devised and success
implemented for low-dimensional systems@5–13#. For more
complex dynamics, such as turbulent flows@14#, non-
linear waves@15#, or quantum fields@16,17# with high- ~or
infinite-!dimensional phase spaces and complicated dyna
cal behavior, many of the existing methods become un
sible in practice. In the most computationally demanding c
culation carried out so far, Kawahara and Kida@18# found
two periodic solutions in a 15 422-dimensional discretizat
of a turbulent plane Couette flow. The topology of hig
dimensional flows is hard to visualize, and even with a
cent starting guess for the shape and location of a peri
orbit, methods like the Newton-Raphson method are likely
fail. In Ref. @19# we argued that variational, cost-functio
minimization methods offer a robust alternative. Here
derive, implement, and discuss in detail one such variatio
method for finding periodic orbits in general flows and sp
cifically high-dimensional flows.

In essence, any numerical algorithm for finding period
orbits is based on devising a dynamical system that posse
the desired orbit as an attracting fixed point with a siza
basin of attraction. Beyond that, there is much freedom
constructing such a system.

For example, the multipoint shooting method elimina
the long-time exponential instability of unstable orbits
splitting an orbit into a number of short segments, each w
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a controllable expansion rate. Multiple shooting combin
with the Newton-Raphson method is an efficient tool f
locating periodic orbits of maps@20#. A search for periodic
orbits of a continuous time flow can be reduced to a multi
shooting search for periodic orbits of a set of maps by c
structing a set of phase space Poincare´ sections such that an
orbit leaving one section reaches the next one in a qua
tively predictable manner, without traversing other sectio
along the way. In turbulent, high-dimensional flows such
quences of sections are hard to come by. One solution m
be a large set of Poincare´ sections, with the intervening fligh
segments short and controllable.

Here we follow a different strategy and discard Poinca´
sections altogether; we replace maps between spatially fi
Poincare´ sections by maps induced by discretizing the tim
evolution into small time steps. For sufficiently small tim
steps such maps are small deformations of identity. We
tribute many points along a smooth loopL, our initial guess
of a cycle location and its topological layout. If both the tim
steps and the loop deformations are taken to be infinitesim
a partial differential equation governs the ‘‘Newton descen
a fictitious time flow of a trial loopL into a genuine cyclep,
with exponential convergence in the fictitious time variab
We then use methods developed for solving partial differ
tial equations~PDEs! to get the solution. Stated succinctl
the idea of our method is to make an informed rough gu
of what the desired cycle looks like globally and then us
variational method to drive the initial guess toward the ex
solution. For robustness, we replace the guess of a si
orbit point by a guess of an entire orbit. For numerical saf
we replace the Newton-Raphson iteration by the ‘‘Newt
descent,’’ a differential flow that minimizes a cost functio
computed as a deviation of the approximate flow from
true flow along a smooth loop approximation to a cycle.

In Sec. II we derive the partial differential equation th
governs the evolution of an initial guess loop toward a cy
and the corresponding cost function. An extension of
method to Hamiltonian systems and systems with hig
time derivatives is presented in Sec. III. Simplificatio
due to symmetries and details of our numerical implem
tation of the method are discussed in Sec. IV. In Sec. V
test the method on the He´non-Heiles system, the restricte
three-body problem, and a weakly turbulent Kuramo
©2004 The American Physical Society17-1
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Sivashinsky system. We summarize our results and dis
possible improvements of the method in Sec. VI.

II. THE NEWTON DESCENT METHOD IN LOOP SPACE

A. A variational equation for the loop evolution

A periodic orbit is a solution (x,T), xPRd, TPR of the
periodic orbit condition

f T~x!5x, T.0, ~1!

for a given flow or discrete time mappingx° f t(x). Our
goal is to determine periodic orbits of flows defined by fi
order ordinary differential equations~ODEs!

dx

dt
5v~x!, xPM,Rd, ~x,v !PTM, ~2!

in many~even infinitely many! dimensionsd. HereM is the
phase space~or state space! in which evolution takes place
TM is the tangent bundle@21#, and the vector fieldv(x) is
assumed to be smooth~sufficiently differentiable! almost ev-
erywhere.

We make our initial guess at the shape and the locatio
a cycle p by drawing a loopL, a smooth, differentiable
closed curvex̃(s)PL,M, wheres is a loop parameter. As
the loop is periodic, we find it convenient to restricts to @0,
2p#, with the periodic conditionx̃(s)5 x̃(s12p). Assume
that L is close to the true cyclep, pick N pairs of nearby
points along the loop and along the cycle

x̃n5 x̃~sn!, 0<s1,¯,sN,2p,

xn5x~ tn!, 0<t1,¯,tN,Tp , ~3!

and denote byd x̃n the deviation of a pointxn on the periodic
orbit p from the nearby pointx̃n ,

xn5 x̃n1d x̃n .

The derivationsd x̃ are assumed small, vanishing asL ap-
proachesp.

The orientation of thes velocity vector tangent to the loo
L,

ṽ~ x̃!5
dx̃

ds
,

is intrinsic to the loop, but its magnitude depends on the~still
to be specified! parametrizations of the loop.

At each loop pointx̃nPL we thus have two vectors, th
loop tangentṽn5 ṽ( x̃n) and the flow velocityvn5v( x̃n).
Our goal is to deformL until the directions ofṽn and vn
coincide for alln51,¯,N, N→`, that is,L5p. To match
their magnitude, we introduce a local time scaling factor

l~sn![Dtn /Dsn , ~4!

where Dsn5sn112sn , n51,¯,N21, DsN52p2(sN
2s1), and likewise forDtn . The scaling factorl(sn) en-
sures that the loop incrementDsn is proportional to its coun-
01621
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terpartDtn1dtn on the cycle when the loopL is close to the
cycle p, with dtn→0 asL→p.

Let x(t)5 f t(x) be the state of the system at timet ob-
tained by integrating Eq.~2!, and J(x,t)5dx(t)/dx(0) be
the corresponding Jacobian matrix obtained by integratin

dJ

dt
5AJ, Ai j 5

]v i

]xj
, with J~x,0!51. ~5!

Since the pointxn5 x̃n1d x̃n is on the cycle,

f Dtn1dtn~ x̃n1d x̃n!5 x̃n111d x̃n11 . ~6!

Linearization

f dt~x!'x1v~x!dt, f t~x1dx!'x~ t !1J~x,t !dx

of Eq. ~6! about the loop pointx̃n and the time intervalDtn
to the next cycle point leads to the multipoint shooti
Newton-Raphson equation, for any step sizeDtn :

d x̃n112J~ x̃n ,Dtn!d x̃n2vn11dtn5 f Dtn~ x̃n!2 x̃n11 . ~7!

Provided that the initial guess is sufficiently good, t
Newton-Raphson iteration of Eq.~7! generates a sequence
loopsL with a decreasing cost function@19#

F2~ x̃![
N

~2p!2 (
i 51

N

„f Dtn~ x̃n!2 x̃n11…
2, x̃N115 x̃1 . ~8!

The prefactorN/(2p)2 makes the definition ofF2 consistent
with Eq. ~13! in the N→` limit. If the flow is locally
strongly unstable, the neighborhood in which the lineari
tion is valid could be so small that the full Newton ste
would overshoot, renderingF2 bigger rather than smaller. In
this case the step-reduced, damped Newton method
needed. As proved in Ref.@22#, under conditions satisfied
here,F2 decreases monotonically if an appropriate step s
is taken. If infinitesimal steps are taken, decrease ofF2 is
ensured. We parametrize such continuous deformation
the loop by afictitious timet.

We fix Dsn and proceed bydt each step of the iteration
that is, multiply the right hand side of Eq.~7! by dt. Accord-
ing to Eq.~4!, the change ofDtn with respect tot is equal to
dtn5(]l/]t)(sn ,t)dtDsn . As d x̃n5(]/]t) x̃(sn ,t)dt, di-
viding both sides of Eq.~7! by dt yields

dx̃n11

dt
2J~ x̃n ,Dtn!

dx̃n

dt
2vn11

]l

]t
~sn ,t!Dsn

5 f Dtn~ x̃n!2 x̃n11 . ~9!

In theN→` limit, the step sizesDsn ,Dtn5O(1/N)→0, and
we have

vn11'vn , x̃n11' x̃n1 ṽnDsn ,

J~ x̃n ,Dtn!'11A~ x̃n!Dtn , f Dtn~ x̃n!' x̃n1vnDtn .

Substituting into Eq.~9! and using the scaling relation~4!,
we obtain
7-2
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]2x̃

]s ]t
2lA

] x̃

]t
2v

]l

]t
5lv2 ṽ. ~10!

This PDE, which describes the evolution of a loopL(t)
toward a periodic orbitp, is the central result of this pape
The family of loops so generated is parametrized byx̃
5 x̃(s,t)PL(t), where s denotes the position along th
loop, and the fictitious timet parametrizes the deformatio
of the loop@see Fig. 1~a!#. We refer to this infinitesimal step
version of the damped Newton-Raphson method as
‘‘Newton descent.’’

The important feature of this equation is that a decreas
cost functional exists. Rewriting Eq.~10! as

]

]t
~ ṽ2lv !52~ ṽ2lv !, ~11!

we have

ṽ2lv5e2t~ ṽ2lv !ut50 , ~12!

so the fictitious timet flow decreases the cost functional

F2@ x̃#5
1

2p R
L~t!

dx̃@ ṽ~ x̃!2lv~ x̃!#2 ~13!

monotonically as the loop evolves toward the cycle.
At each iteration step the differences of the loop tang

velocities and the dynamical flow velocities are reduc
by the Newton descent. Ast→`, the fictitious time
flow aligns the loop tangentṽ with the dynamical flow
vector ṽ5lv, and the loopx̃(s,t)PL(t) @see Fig. 1~b!#
converges to a genuine periodic orbitp5L(`) of the dy-
namical flow ẋ5v(x). Once the cyclep is reached, by Eq
~4!, l(s,`)5(dt/ds)„x̃(s,`)…, and the cycle period is given
by

Tp5E
0

2p

l„x̃~s,`!…ds.

FIG. 1. ~a! An annulusL(t) swept by the Newton descent flow
dx̃/dt, smoothly connecting the initial loopL(0) to the periodic
orbit p5L(`). ~b! In general the loop velocity fieldṽ( x̃) does
not coincide withlv( x̃); for a periodic orbitp, it does so at every
xPp.
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Of course, as at this stage we have already identified
cycle, we may pick instead an initial point onp and calculate
the period by a direct integration of the dynamical equatio
~2!.

B. Marginal directions and accumulation of loop points

Numerically, two perils lurk in a direct implementation o
the Newton descent~10!.

First, when a cycle is reached, it remains a cycle unde
cyclic permutation of the representative points, so on
cycle the operator

Ā5
]

]s
2lA

has a marginal eigenvectorv„x̃(s)… with eigenvalue 0. Ifl is
fixed, as the loop approaches the cycle, Eq.~10! approaches
its limit

Ā
]x

]t
50.

Therefore, on the cycle, the operatorĀ21 becomes singular
and numerical problems arise.

The second potential peril hides in the freedom of cho
ing the loop~re!parametrization. Sinces is related to the time
t by the yet unspecified factorl(s,t), uneven distributions
of the sampling points over the loopL could arise, with the
numerical discretization pointsx̃n clumping densely along
some segments ofL and leaving big gaps elsewhere, th
degrading the numerical smoothness of the loop.

We remedy these difficulties by imposing constraints
Eq. ~10!. In our calculation for the Kuramoto-Sivashinsk
system of Sec. V, the first difficulty is dealt with by introdu
ing one Poincare´ section, for example, by fixing one coord
nate of one of the sampling points,x̃1(s2 ,t)5const. This
breaks the translational invariance along the cycle. Ot
types of constraints might be better suited to a specific pr
lem at hand. For example, we can demand that the ave
displacement of the sampling points along the loop vanish
thus avoiding a spiraling descent toward the desired cyc

We deal with the second potential difficulty by choosing
particularly simple loop parametrization. So far, the para
etrizations is arbitrary and there is much freedom in choo
ing the best one for our purposes. We pick thes-independent
constant scalingl(s,t)5l(t). With uniform grid sizeDsn
5Ds and fixedl ~in s!, the loop parameters5t/l is propor-
tional to time t, and the discretization~10! distributes the
sampling points along the loop evenly in time. As the lo
approaches a cycle,] x̃/]t is numerically obtainable from
Eq. ~10!, and on the cycle the period is given byTp
52pl.

Even though this paper focuses on searches for peri
orbits, the Newton descent is a general method. With app
priate modifications of boundary conditions and scaling
time, Eq. ~10! can be adapted to the determination of h
moclinic or heteroclinic orbits between equilibrium points
periodic orbits of a flow, or more general boundary val
7-3
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problems. Applied to two-point boundary value problem
Newton descent is similar to quasilinearization@23# but has
the advantage that the free parametersl(s,t) are available
for adjusting scales in the problem and that searches ca
restricted to the phase space submanifolds of interes
simple example of a restriction to a submanifold are searc
for cycles of a given energy, constrained to theH(q,p)5E
energy shell in the phase space of a Hamiltonian syst
Furthermore, as we shall show now, the symplectic struc
of Hamilton’s equations greatly reduces the dimensiona
of the submanifold that we need to consider.

III. EXTENSIONS OF NEWTON DESCENT

In classical mechanics particle trajectories are also s
tions of a variational principle, the Hamilton variational pri
ciple. For example, variational methods are the key ingre
ent of the Aubry-Mather theory of area-preserving tw
maps, discrete-time Hamiltonian dynamical systems part
larly suited to explorations of the Kolmogorov-Arnold
Moser~KAM ! theorem. Proofs of the Aubry-Mather theore
@24# on the existence of quasiperiodic solutions are va
tional. It was quickly realized that the variational metho
can also yield reliable, high-precision computations of lo
periodic orbits of twist map models in two or more dime
sions, needed for KAM renormalization studies@25#.

A fictitious time gradient flow for orbits of mappings
similar to the one discussed in the companion paper@19#,
was introduced by Anegent@26# for twist maps, and used b
Golé @27# in his proof of the Aubry-Mather theorem. Math
ematical bounds on the regions of stability of KAM tori a
notoriously restrictive compared to the numerical indic
tions, and Falcolini and de la Llave@10# and Tompaidis@11#
have found the gradient flow formulation advantageous b
in studies of the analyticity domains of KAM stability, a
well as in proving the Aubry-Mather theorem for extend
systems.

As far as we know, all numerical applications so far ha
been to low-dimensional Hamiltonian maps, not to contin
ous time flows. Instead of attempting to implement the lea
action variational principle as loop dynamics in a fictitio
time, here we shall implement our Newton descent as a fl
that again minimizes a cost function, this time one that
nalizes misalignment of accelerations, the true one and
one computed on the loop approximation to a cycle. As th
is currently no least-action formulation of loop dynamics, w
do not know what the relative computational merits of t
two kinds of variational principles are.

To motivate what follows on the level of everyday int
ition, consider how the least-action periodic orbit sea
works for a billiard: Wrap around a rubber band of a rough
correct topology, and then move the points along the billi
walls until the length~that is, the action! of the rubber band
is extremal~maximal or minimal under infinitesimal change
of the boundary points!. Note that the extremization of actio
requires onlyD configuration coordinate variations, not th
full 2D-dimensional phase space variations.

Can we exploit this property of the Newtonian mechan
to reduce the dimensionality of our variational calculation
01621
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The answer is yes, and easiest to understand in terms o
Hamilton variational principle which states that classical t
jectories are extrema of the Hamilton principal function~or,
for fixed energyE, the actionS5R1Et)

R~q1 ,t1 ;q0 ,t0!5E
t0

t1
dtL„q~ t !,q̇~ t !,t…,

whereL(q,q̇,t) is the Lagrangian. Given a loopL(t) we can
compute not only the tangent ‘‘velocity’’ vectorṽ, but also
the local loop curvature or ‘‘acceleration’’ vector

ã5
]2x̃

]s2 ,

and, indeed, as manys derivatives as needed. Matching th
dynamical accelerationa( x̃) @assumed to be a function ofx̃
andv( x̃)] with the loop ‘‘acceleration’’ã( x̃) results in a new
cost function and the corresponding PDE~11! for the evolu-
tion of the loop,

]

]t
~ ã2l2a!52~ ã2l2a!.

We usel2 instead ofl in order to keep the notation consis
tent with Eq.~4!, that is, t5ls. Expressed in terms of the
loop variablesx̃(s), the above equation becomes

]3x̃

]2s ]t
2l

]a

]v
]2x̃

]s ]t
2l2

]a

] x̃

] x̃

]t
1S ]a

]v
] x̃

]s
22laD ]l

]t

5l2a2ã, ~14!

where v5] x̃/l]s. Although Eq. ~14! looks more compli-
cated than Eq.~10!, in numerical fictitious time integrations
we are rewarded by having to keep only half of the pha
space variables.

More generally, if a differential equation has the form

x~m!5 f ~x,x~1!,...,x~m21!!, ~15!

wherex(k)5dkx/dtk, k51,¯,m andxPRd, the same tech-
nique can be used to match the highest derivativeslmx(m)

and x̃(m),

]

]t
~ x̃~m!2lmx~m!!52~ x̃~m!2lmx~m!!,

with x̃(m)5(]m/]sm) x̃(s) calculated directly fromx̃(s) on
the loop by differentiation. In loop variablesx̃(s) we have

]m11x̃

]sm ]t
2lm(

k50

m
] f

]x~k!

]

]t

]kx̃

lk]sk2mlm21x̃~m!
]l

]t

5lmx~m!2 x̃~m!, ~16!

wherex5x(0) and x(k)5]kx̃/lk]ks, k51,¯,m21 are as-
sumed. Conventionally, Eq.~15! is converted to a system o
md first order differential equations, whose discretized d
rivative @see Eq.~17! below# are banded matrices with band
7-4
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width of 5md. Using Eq.~16!, we need onlyd equations and
for the same accuracy the corresponding bandwidth ism
14)d. The computing load has been greatly reduced,
more so the largerm is. Nevertheless, choice of a good initi
loop guess and visualization of the dynamics are alw
aided by a plot of the orbit in the fullmd-dimensional phase
space, where loops cannot self-intersect and topological
tures of the flow are exhibited more clearly.

IV. IMPLEMENTATION OF NEWTON DESCENT

As the loop points satisfy a periodic boundary conditio
it is natural to employ truncated discrete fast Fourier tra
forms ~FFTs! in numerical integrations of Eq.~10!. Since we
are interested only in the final, stationary cyclep, the accu-
racy of the fictitious time integration is not crucial; all w
have to ensure is the smoothness of the loop throughou
integration. The Euler integration with fairly large time ste
dt suffices. The computationally most onerous step in imp
e

o

01621
e

s

a-

,
-

he

-

mentation of the Newton descent is the inversion of the la
matrix Ā in Eq. ~10!. When the dimension of the dynamica
phase space of Eq.~2! is high, the inversion ofĀ needed to
get ] x̃/]t takes most of the integration time, making th
evolution extremely slow. This problem is partially solved
finite difference methods are used. The large matrixĀ then
becomes sparse and the inversion can be done far m
quickly.

A. Numerical implementation

In a discretization of a loop, numerical stability requir
accurate discretization of loop derivatives such as

ṽn[
] x̃

]sU
x̃5 x̃~sn!

'~D̂x̃!n .

In our numerical work we use the four-point approximati
@28#
D̂5
1

12h S 0 8 21 1 28

28 0 8 21 1

1 28 0 8 21

¯

1 28 0 8 21

21 1 28 0 8

8 21 1 28 0

D ~17!
ere

ee-

e
-

t of
fic-
an

w in
LU
ert
ed

ny
whereh52p/N. Here, each entry represents a@d3d# ma-
trix, 8→81, etc., with blank spaces filled with zeros. Th
two @2d32d# matrices

M15S 1 281

0 1 D , M25S 21 0

81 21D ,

located at the top right and bottom left corners take care
the periodic boundary condition.

The discretized version of Eq.~10! with a fictitious time
Euler stepdt is

S Â 2 v̂

â 0
D S d x̃

dl D5dtS l v̂2 v̂̃
0 D , ~18!

where

Â5D̂2l diag@A1 ,A2 ,...,AN#,

with An5A„x̃(sn)… defined in Eq.~5!, and

v̂5~v1 ,v2 ,...,vN! with vn5v„x̃~sn!…,

v̂̃5~ ṽ1 ,ṽ2 ,...,ṽN! with ṽn5 ṽ„x̃~sn!…
f

are the two vector fields that we want to match everywh
along the loop.â is an Nd-dimensional row vector which
imposes the constraint on the coordinate variationsd x̃
5(d x̃1 ,d x̃2 ,...,d x̃N). The discretized Newton descent~18!
is an infinitesimal time step variant of the multipoint~Poin-
carésection! shooting equation for flows@20#. In formulating
a variational method for periodic orbit searches in a thr
dimensional generalized standard map, Tompaidis@11# also
derived an expression similar to Eq.~18!. In order to solve
for the deformation of the loop coordinates and period,d x̂
anddl, we need to invert the@(Nd11)3(Nd11)# matrix
on the left hand side of Eq.~18!.

In our numerical work, this matrix is inverted using th
banded LU decomposition@29# on the embedded band
diagonal matrix, and the Woodbury formula@29# on the cy-
clic and border terms. The LU decomposition takes mos
the computational time and considerably slows down the
titious time integration. We speed up the integration by
inversion scheme that relies on the smoothness of the flo
the loop space. It goes as follows. Once we have the
decomposition at one step, we use it to approximately inv
the matrix in the next step, with accurate inversion achiev
by iterative approximate inversions@29#. In our applications
we find that a single LU decomposition can be used for ma
7-5



a
th

ax
n
in
th

th
oo

ice
nt
cy
on
or
ll
r-

in
th

t

ts

th
. W

or
t

ng
po
pa
nc
ib
oo
W
g
ch
re
le
ic
tti
ys
tia

g
lu
-

ro
o

s
ll

f-

s
itial
al

ired

in
al

to
he
-
nt

itial
ting
ic
in

rtain
oth
d as
la-

ain
p
se,
op,
re-
etry
a-
not
he

-
that
the
sid-

te
we

ple,
u-

y
to

h a
n-

,

Y. LAN AND P. CVITANOVIĆ PHYSICAL REVIEW E 69, 016217 ~2004!
dt evolution steps. The further we go, the more iterations
each step are needed to implement the inversion. After
number of such iterations exceeds some given fixed m
mum number, we perform another LU decomposition a
proceed as before. The number of integration steps follow
one decomposition is an indication of the smoothness of
evolution, and we adjust the integration step sizedt accord-
ingly: the greater the number, the bigger the step size. As
loop approaches a cycle, the evolution becomes so sm
that the step size can be brought all the way up todt51, the
full undamped Newton-Raphson iteration step. In pract
one can start with a small but reasonable number of poi
in order to get a coarse solution of relatively low accura
After achieving that, the refined guess loop can be c
structed by interpolating more points and used for a m
accurate calculation in whichdt can be set as large as the fu
Newton stepdt51, recovering the rapid quadratic conve
gence of the Newton-Raphson method.

It is essential that the smoothness of the loop is ma
tained throughout the calculation. We monitor the smoo
ness by checking the Fourier spectrum ofx̃(•,t). An un-
stable difference scheme for loop derivatives might lead
unbounded sawtooth oscillations@30#. A heuristic local linear
stability analysis ~described in @31#! indicates that our
scheme is stable, and that the high-frequency componen
not generate instabilities.

B. Initialization and convergence

As in any other method, a qualitative understanding of
dynamics is a prerequisite to successful cycle searches
start by numerical integration with the dynamical system~2!.
Numerical experiments reveal regions where a traject
spends most of its life, giving us the first hunch as to how
initialize a loop. We take the FFT of some nearly recurri
orbit segment and keep only the lowest-frequency com
nents. The inverse Fourier transform back to the phase s
yields a smooth loop that we use as our initial guess. Si
any generic orbit segment is not closed and might exh
large gaps, the Gibbs phenomenon can take the initial l
so constructed quite far away from the region of interest.
deal with this problem by manually deforming the orbit se
ment into a closed loop before performing the FFT. Sear
ing for longer cycles with multiple circuits requires mo
delicate initial conditions. The hope is that a few short cyc
can help us establish an approximate symbolic dynam
and guesses for longer cycles can be constructed by cu
and gluing the short, known ones. For low-dimensional s
tems, such methods yield quite good systematic ini
guesses for longer cycles@32#.

An alternative way to initialize the search is by utilizin
adiabatic deformations of dynamics, or the homotopy evo
tion @33#. If the dynamical system~2! depends on a param
eter m, short cycles might survive asm varies on passing
through a family of dynamical systems, creating in the p
cess new cycles through sequences of bifurcations. M
short unstable cycles vary little for small changes ofm. So a
cycle existing for the parameter valuem1 can be chosen a
the initial trial loop for a nearby cycle surviving a sma
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changem1→m2 . In practice, one or two iterations often su
fice to find the new cycle.

A good choice of the initial loop significantly expedite
the computation, but there are more reasons why good in
loops are crucial. First of all, if we break the translation
invariance by imposing a constraint such asx̃1(s2 ,t)5c, we
have to make sure that both the initial loop and the des
cycle intersect this Poincare´ plane. Hence, the initial loop
cannot be wildly different from the desired cycle. Second,
view of Eq. ~12!, the loop always evolves toward a loc
minimum of the cost functional~13!, with discretization
points moving along theṽ2lv fixed direction, determined
by the initial condition. If the local minimum corresponds
a zero of the cost functional, we obtain a true cycle of t
dynamical flow~2!. However, if the value of the cost func
tional is not equal to zero at the minimum while the gradie
is zero, Eq.~18! yields a singular matrixÂ. In such cases the
search has to be abandoned and restarted with a new in
loop guess. In the periodic orbit searches of Sec. V star
with blind initial guesses~guesses unaided by a symbol
dynamics partition!, such local minima were encountered
about 30% of cases.

C. Symmetry considerations

The system under consideration often possesses ce
symmetries. If this is the case, the symmetry should be b
feared for possible marginal eigendirections and embrace
a guide to possible simplifications of the numerical calcu
tion.

If the dynamical system equations~2! are invariant under
a discrete symmetry, the concept of fundamental dom
@5,34# can be utilized to reduce the length of the initial loo
when searching for a cycle of a given symmetry. In this ca
we need discretize only an irreducible segment of the lo
significantly decreasing the dimensionality of the loop rep
sentation. Other parts of the loop are replicated by symm
operations, with the full loop tiled by copies of the fund
mental domain segment. The boundary conditions are
periodic any longer, but all that we need to do is modify t
cyclic terms. Instead of usingM1 andM2 in Eq. ~17!, we use
M1Q andM2Q21, whereQ is the relevant symmetry opera
tion that maps the fundamental segment to the neighbor
precedes it. In this way, a fraction of the points represent
cycle with the same accuracy, speeding up the search con
erably.

If a continuous symmetry is present, it may complica
the situation at first glance but becomes something that
can take advantage of after careful checking. For exam
for a Hamiltonian system unstable cycles may form contin
ous families@35,36#, with one or more members of a famil
belonging to a given constant energy surface. In order
cope with the marginal eigendirection associated with suc
continuous family, we search for a cycle on a particular e
ergy surface by replacing the last row of Eq.~18! by an
energy shell constraint@20#. We put one point of the loop
sayx̃2 , on the constant energy surfaceH( x̃)5E and impose
the constraint¹H( x̃2)•d x̃250, so as to keepx̃2 on the sur-
face for allt. The integration of Eq.~10! then automatically
7-6
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FIG. 2. The He´non-Heiles system in a chaotic region.~a! An initial loop L(0) and ~b! the unstable periodic orbitp of period
T513.1947 reached by the Newton descent~14!. ~c! The exponential decrease of the cost function ln(F2)'22.0502t16.0214.
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brings all other loop points to the same energy surface.
ternatively, we can look for a cycle of given fixed periodT
by fixing l and dropping the constraint in the bottom line
Eq. ~18!. These two approaches are conjugate to each o
both needed in applications. In most cases, they are equ
lent. One exception is the harmonic oscillator for which t
oscillations have identical period but different energy. No
that in both cases the translational invariance is restored
we have discarded the Poincare´ section condition of Sec
II B. As explained in@9#, this causes no trouble in numeric
calculations.

V. APPLICATIONS

We have checked that the iteration of Eq.~18! yields
quickly and robustly the short unstable cycles for stand
models of low-dimensional dissipative flows such as
Rössler system@37#. More daunting challenges are search
for cycles in Hamiltonian flows and for spatiotemporally p
riodic solutions of PDEs. In all numerical examples that f
low, the convergence condition isF2,1025.

A. Hénon-Heiles system and restricted three-body problem

First, we test the Hamiltonian version of the Newton d
scent derived in Sec. III by applying the method to tw
Hamiltonian systems, both with two degrees of freedom.
both cases, our initial loop guesses are rather arbitrary c
binations of trigonometric functions. Nevertheless, the
served convergence is fast.

The Hénon-Heiles system@38# is a standard model in ce
lestial mechanics, described by the Hamiltonian

H5
1

2
~px

21py
21x21y2!1x2y2

y2

3
. ~19!

It has time reversal symmetry and a threefold discrete sp
symmetry. Figure 2 shows a typical application of Eq.~14!,
with the Newton descent search restricted to the config
tion space. The initial loop, Fig. 2~a!, is a rather coarse initia
guess. We arbitrarily fix the scalingl52.1, that is, we search
for a cyclep of the fixed periodTp513.1947, with no con-
straint on the energy. Figure 2~b! shows the cycle found by
the Newton descent, with energyE50.1794, and the full
discrete symmetry of the Hamiltonian. This cycle persi
adiabatically for a small range of values ofl; with l changed
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much, the Newton descent takes the same initial loop i
other cycles. Figure 2~c! verifies that the cost functionalF2

decreases exponentially with slope22 throughout thet
5@0,10# integration interval, as predicted by Eq.~12!. The
points get more and more sparse ast increases, because ou
numerical implementation adaptively chooses bigger a
bigger step sizesdt.

In the Hénon-Heiles case, the accelerationsax ,ay depend
only on the configuration variablesx,y. More generally, the
accelerations could also depend onẋ,ẏ. Consider as an ex
ample the equations of motion for the restricted three-bo
problem@39#,

ẍ52ẏ1x2~12m!
x1m

r 1
3 2m

x211m

r 2
3 ,

ÿ522ẋ1y2~12m!
y

r 1
32m

y

r 2
3 , ~20!

where r 15A(x1m)21y2, r 25A(x211m)21y2. These
equations describe the motion of a test particle in a rota
frame under the influence of the gravitational force of tw
heavy bodies with masses 1 andm!1 fixed at~2m, 0! and
(12m,0) in the~x, y! coordinate frame. The stationary solu
tions of Eq.~20! are called the Lagrange points, correspon
ing to a circular motion of the test particle in phase with t
rotation of the heavy bodies. The periodic solutions in t
rotating frame correspond to periodic or quasiperiodic m
tion of the test particle in the inertial frame. Figure 3 sho
an initial loop and the cycle to which it converges, in th

FIG. 3. ~a! An initial loop L(0), and~b! the unstable periodic
orbit p of periodTp52.7365 reached by the Newton descent~14!,
for the restricted three-body problem~20! in the chaotic regime,
m50.04.
7-7
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Y. LAN AND P. CVITANOVIĆ PHYSICAL REVIEW E 69, 016217 ~2004!
rotating frame. Although the cycle looks simple, the Newt
descent requires advancing in smalldt steps in order for the
initial loop to converge to it.

In order to successfully apply the Hamiltonian version
the Newton descent~14!, we have to ensure that the te
particle keeps a finite distance from the origin. If a cyc
passes very close to one of the heavy bodies, the acceler
can become so large that our scheme of uniformly distrib
ing the loop points in time might fail to represent the lo
faithfully. Another distribution scheme is required in th
case, for example, making the density of points proportio
to the magnitude of acceleration.

B. Periodic orbits of Kuramoto-Sivashinsky system

The Kuramoto-Sivashinsky equation arises as an am
tude equation for interfacial instability in a variety of co
texts @40,41#. In one-dimensional space, it reads

ut5~u2!x2uxx2nuxxxx, ~21!

wheren is a ‘‘superviscosity’’ parameter that controls the ra
of dissipation and (u2)x is the nonlinear convection term. A
n decreases, the system undergoes a series of bifurcat
leading to increasingly turbulent, spatiotemporally chao
dynamics.

If we impose the periodic boundary conditionu(t,x
12p)5u(t,x) and choose to study only the odd solutio
u(2x,t)52u(x,t), u(x,t) can be expanded in a discre
spatial Fourier series@32#,

u~x,t !5 i (
k52`

`

ak~ t !eikx, ~22!

wherea2k52akPR. In terms of the Fourier component
the PDE~21! becomes an infinite ladder of ODEs:

ȧk5~k22nk4!ak2k (
m52`

`

amak2m . ~23!

In numerical simulations we work with the Galerkin trunc
tions of the Fourier series since in the neighborhood of
strange attractor the magnitude ofak decreases very fast wit
increasingk, high-frequency modes playing a negligible ro
in the asymptotic dynamics@42#. In this way Galerkin trun-
cations reduce the dynamics to a finite but large numbe
ODEs. We work withd532 dimensions in our numerica
calculations. In Ref.@32#, multipoint shooting was success
fully applied to obtain periodic orbits close to the onset
spatiotemporal chaos (n50.03). In this regime, our metho
is so stable that big time stepsdt can be employed even a
the initial guesses, leading to extremely fast convergence
attribute this robustness to the simplicity of the structure
the attractor at high viscosity values.

The challenge comes with decreasingn, with the dynam-
ics turning more and more turbulent. Already atn50.015 the
system is moderately turbulent, and the phase space por
of the dynamics reveal a complex labyrinth of ‘‘eddies’’
different scales and orientations. While the highly unsta
nature of orbits and intricate structure of the invariant
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hinder applications of conventional cycle-search routines
this setting our variational method works well. We desi
rather arbitrary initial loops from numerical trajectory se
ments, and the calculation proceeds as before, except
now a smalldt has to be used initially to ensure numeric
stability. Topologically different loops are very likely to re
sult in different cycles, while some initial loop guesses m
lead to local nonzero minima of the cost functionalF2. As
explained in Sec. IV, in such cases the method diverges,
the search is restarted with a new initial loop guess.

Two initial loop guesses are displayed in Fig. 4, alo
with the two periodic orbits detected by the Newton desce
In discretization of the initial loops, each point has to
specified in alld dimensions; here the coordinates$a1 ,a2%
are picked so that topological similarity between initial a
final loops is visually easy to identify. Other projections fro
d532 dimensions to subsets of two coordinates appea
make the identification harder, if not impossible. In both c
culations, we molded segments of typical trajectories i
smooth closed loops by the Fourier filtering method of S
IV. As the desired orbit becomes longer and more comp
more sampling points are needed to represent the loop.
useN5512 points to represent the loop in the~a!,~b! case
andN51024 points in the~c!,~d! case. The space-time evo
lution of u(x,t) for these two unstable spatiotemporally p
riodic solutions is displayed in Fig. 5. Asu(x,t) is antisym-
metric on@2p, p#, it suffices to display the solutions on th
xP@0,p# interval.

VI. DISCUSSION

In order to cope with the difficulty of finding periodic
orbits in high-dimensional chaotic flows, we have devis

FIG. 4. The Kuramoto-Sivashinsky system in a spatiotempor
turbulent regime~viscosity parametern50.015, d532 Fourier
mode truncation!. ~a! An initial guessL1 , and~b! the periodic orbit
p1 of period T150.744 892 reached by the Newton descent.~c!
Another initial guessL2 , and~d! the resulting periodic orbitp2 of
periodT251.184 668.
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the Newton descent method, an infinitesimal step variant o
the damped Newton-Raphson method. Our main result is
PDE ~10! which solves the variational problem of minimiz
ing the cost functional~13!. This equation describes the fic
titious time t flow in the space of loops that decreases
cost functional at a uniform exponential rate@see Eq.~12!#.
Variants of the method are presented for special classe
systems, such as Hamiltonian systems. An efficient inte
tion scheme for the PDE is devised and tested on

FIG. 5. Level plot of the space-time evolutionu(x,t) for the two
spatiotemporally periodic solutions of Fig. 4:~a! the evolution of
p1 , with the start of a repeat after the cycle periodT1

50.744 892, and~b! one full periodT251.184 668 in the evolution
of p2 .
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Kuramoto-Sivashinsky system, the He´non-Heiles system,
and the restricted three-body problem.

Our method uses information from a large number
points in phase space, with the global topology of the des
cycle protected by insistence on smoothness and a unif
discretization of the loop. The method is quite robust in pr
tice.

The numerical results presented here are only a proo
principle. We do not know to what periodic orbit the flo
~10! will evolve for a given dynamical system and a give
initial loop. Empirically, the flow goes toward the ‘‘neares
periodic orbit, with the largest topological resemblance. Ea
particular application will still require much work in order t
elucidate and enumerate relevant topological structures.
hope is that the short spatiotemporally periodic solutions
vealed by the Newton descent searches will serve as the
sic building blocks for systematic investigations of chao
and perhaps even ‘‘turbulent’’ dynamics.
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