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Variational method for finding periodic orbits in a general flow
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A variational principle is proposed and implemented for determining unstable periodic orbits of flows as
well as unstable spatiotemporally periodic solutions of extended systems. An initial loop approximating a
periodic solution is evolved in the space of loops toward a true periodic solution by a minimization of local
errors along the loop. The “Newton descent” partial differential equation that governs this evolution is an
infinitesimal step version of the damped Newton-Raphson iteration. The feasibility of the method is demon-
strated by its application to the "Hen-Heiles system, the circular restricted three-body problem, and the
Kuramoto-Sivashinsky system in a weakly turbulent regime.
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[. INTRODUCTION a controllable expansion rate. Multiple shooting combined
with the Newton-Raphson method is an efficient tool for

The periodic orbit theory of classical and quantum chaodocating periodic orbits of mapi20]. A search for periodic
[1,2] is one of the major advances in the study of long-timeorbits of a continuous time flow can be reduced to a multiple
behavior of chaotic dynamical systems. The theory expresseshooting search for periodic orbits of a set of maps by con-
all long-time averages over chaotic dynamics in terms oftructing a set of phase space Poincsgetions such that an
cycle expansion§3], sums over periodic orbit&ycleg or-  orbit leaving one section reaches the next one in a qualita-
dered hierarchically according to the orbit length, stability, ortively predictable manner, without traversing other sections
action. If the symbolic dynamics is known, and the flow is along the way. In turbulent, high-dimensional flows such se-
hyperbolic, longer cycles are shadowed by shorter ones, amguences of sections are hard to come by. One solution might
cycle expansions converge exponentially or even superexpte a large set of Poincasections, with the intervening flight
nentially with the cycle lengt4]. segments short and controllable.

A variety of methods for determining all periodic orbits ~ Here we follow a different strategy and discard Poincare
up to a given length have been devised and successfullyections altogether; we replace maps between spatially fixed
implemented for low-dimensional systefifs-13]. For more  Poincaresections by maps induced by discretizing the time
complex dynamics, such as turbulent flof%4], non- evolution into small time steps. For sufficiently small time
linear waveq15], or quantum field§16,17 with high- (or  steps such maps are small deformations of identity. We dis-
infinite-)dimensional phase spaces and complicated dynamtribute many points along a smooth loapour initial guess
cal behavior, many of the existing methods become unfeaef a cycle location and its topological layout. If both the time
sible in practice. In the most computationally demanding calsteps and the loop deformations are taken to be infinitesimal,
culation carried out so far, Kawahara and Kids] found  a partial differential equation governs the “Newton descent,”
two periodic solutions in a 15 422-dimensional discretizationa fictitious time flow of a trial loofL into a genuine cyclg,
of a turbulent plane Couette flow. The topology of high-with exponential convergence in the fictitious time variable.
dimensional flows is hard to visualize, and even with a de\We then use methods developed for solving partial differen-
cent starting guess for the shape and location of a perioditial equations(PDES to get the solution. Stated succinctly,
orbit, methods like the Newton-Raphson method are likely tahe idea of our method is to make an informed rough guess
fail. In Ref. [19] we argued that variational, cost-function of what the desired cycle looks like globally and then use a
minimization methods offer a robust alternative. Here wevariational method to drive the initial guess toward the exact
derive, implement, and discuss in detail one such variationadolution. For robustness, we replace the guess of a single
method for finding periodic orbits in general flows and spe-orbit point by a guess of an entire orbit. For numerical safety
cifically high-dimensional flows. we replace the Newton-Raphson iteration by the “Newton

In essence, any numerical algorithm for finding periodicdescent,” a differential flow that minimizes a cost function
orbits is based on devising a dynamical system that possessesmputed as a deviation of the approximate flow from the
the desired orbit as an attracting fixed point with a sizablerue flow along a smooth loop approximation to a cycle.
basin of attraction. Beyond that, there is much freedom in In Sec. Il we derive the partial differential equation that
constructing such a system. governs the evolution of an initial guess loop toward a cycle

For example, the multipoint shooting method eliminatesand the corresponding cost function. An extension of the
the long-time exponential instability of unstable orbits by method to Hamiltonian systems and systems with higher
splitting an orbit into a number of short segments, each withtime derivatives is presented in Sec. lll. Simplifications

due to symmetries and details of our numerical implemen-

tation of the method are discussed in Sec. IV. In Sec. V we
*Electronic address: gte158y@prism.gatech.edu test the method on the Hen-Heiles system, the restricted
"Electronic address: predrag.cvitanovic@physics.gatech.edu  three-body problem, and a weakly turbulent Kuramoto-
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Sivashinsky system. We summarize our results and discusgrpartAt,+ 8t,, on the cycle when the loop is close to the

possible improvements of the method in Sec. VI. cycle p, with &t,—0 asL—p.
Let x(t)=f!(x) be the state of the system at tirh@b-
Il. THE NEWTON DESCENT METHOD IN LOOP SPACE tained by integrating Eq(2), and J(x,t)=dx(t)/dx(0) be
A. A variational equation for the loop evolution the corresponding Jacobian matrix obtained by integrating
A periodic orbit is a solutionX,T), xeRY, TeR of the dJ v; )
periodic orbit condition A Ay “ox with J(x,0)=1. ®)
ffx)=x, T>0, (1) Since the poink,=%,+ &%, is on the cycle,
for a given flow or discrete time mapping—f'(x). Our FANT (R + 5%,) =X 1+ ¥y - (6)
goal is to determine periodic orbits of flows defined by first
order ordinary differential equatiof®©DE9 Linearization
dx fX)=x+v(X)8t, FUx+ ox)~x(t)+I(x,t)x
Gi=v0, XeMCRY (xp)eTM, (2 o=xrvi (Xt S=x(D)+3(x.b)

of Eg. (6) about the loop poirk,, and the time interval\t,

in many (even infinitely manydimensionsl. Here M is the  to the next cycle point leads to the multipoint shooting
phase spacéor state spagein which evolution takes place, Newton-Raphson equation, for any step sig:
TM is the tangent bundIg21], and the vector field (x) is
assumed to be smoothufficiently differentiablg almost ev-
erywhere.

We make our initial guess at the shape and the location Ol(le
a cycle p by drawing a loopL, a smooth, differentiable
closed curvéx(s) e LC M, wheresis a loop parameter. As
the loop is periodic, we find it convenient to restricto [0, NN
2], w_|th the periodic cond|t|orT<(s)_=”>‘<(s+2_7r). Assume FZ(y)E_ZE (fAtn(yn)_ynH)Z, Xni1=%;. (8)
that L is close to the true cycle, pick N pairs of nearby (2m)* =1
points along the loop and along the cycle

57(n+1_J(7(naAtn)éSZn_Un+15tn:fAt"(')v(n)_?nJrl- (7)
Provided that the initial guess is sufficiently good, the

wton-Raphson iteration of E¢7) generates a sequence of
loops L with a decreasing cost functiqi9]

The prefactoN/(27)? makes the definition df? consistent

Xa=X(Sy), 0=s;<---<sy<2m, with Eq. (13) in the N—oo limit. If the flow is locally
strongly unstable, the neighborhood in which the lineariza-
Xn=X(t,), O=t;<---<ty<T,, 3 tion is valid could be so small that the full Newton step

would overshoot, rendering? bigger rather than smaller. In
and denote byX, the deviation of a poink, on the periodic this case the step-reduced, damped Newton method is

orbit p from the nearby poirk,, needed. As proved in Ref22], under conditions satisfied
_ here,F? decreases monotonically if an appropriate step size
Xp =X+ Xy is taken. If infinitesimal steps are taken, decreasé& ofis

ensured. We parametrize such continuous deformations of
the loop by dfictitious timer.

We fix As,, and proceed byt each step of the iteration,
that is, multiply the right hand side of E7) by 7. Accord-
ing to Eq.(4), the change oAt,, with respect tor is equal to
ax ot,=(INId7)(S,,7) 0TAS,. As 6X,=(dld7)X(s,,7)oT, di-

The derivationséx are assumed small, vanishing sap-
proaches.

The orientation of the velocity vector tangent to the loop
L1

(X)= Js’ viding both sides of Eq(7) by &7 yields
is intrinsic to the loop, but its magnitude depends on(st# dz”;l_\](yn JAt,) %—vnﬂj—:(SnJ)ASn

to be specifiedparametrizatiors of the loop.
At each loop poinf,,e L we thus have two vectors, the = FA(X, )~ s 1 - 9)
loop tangentv,=7(X,) and the flow velocityv,=v(X,).
Our goal is to defornL until the directions ofv,, and v, In theN— <o limit, the step sizeds, ,At,=O(1/N)—0, and
coincide for alln=1,--,N, N—oo, that is,L=p. To match  we have
their magnitude, we introduce a local time scaling factor
Un+1~Un, Xn41~Xnt0pAS,,
N(s,)=At,/As,, (4)
~ — ~ Atn ~ ~~
where AS,=S..1—8.. n=l.-N-1, Asy=2m—(Sy J(Xn, Aty ~1+A(X,)At,, 2n(X,)~=X,+v,At,.
—s;), and likewise forAt,. The scaling factoi(s,) en-  Substituting into Eq(9) and using the scaling relatiof),
sures that the loop incremeAs, is proportional to its coun- we obtain
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Of course, as at this stage we have already identified the
cycle, we may pick instead an initial point @rand calculate
the period by a direct integration of the dynamical equations

).

L(o9=p

L(7) . — . .
B. Marginal directions and accumulation of loop points

bald

Numerically, two perils lurk in a direct implementation of
the Newton descentlO).

First, when a cycle is reached, it remains a cycle under a
cyclic permutation of the representative points, so on the
() ®) cycle the operator

L(0)

FIG. 1. (a) An annulusL(7) swept by the Newton descent flow
dx/dr, smoothly connecting the initial loop(0) to the periodic s ANA
orbit p=L(x). (b) In general the loop velocity fiel@(X) does

not coincide withhv (X); for a periodic orbitp, it does so at every has a marginal eigenvectofX(s)) with eigenvalue 0. If is

Xep. fixed, as the loop approaches the cycle, @4) approaches
its limit
9% A ax N o 10
gsar ar Var OV (19 % o
ar

This PDE, which describes the evolution of a lobg7)

toward a periodic orbip, is the central result of this paper. Therefore, on the cycle, the operar ! becomes singular
The family of loops so generated is parametrized Y 544 numerical problems arise.

=X(s,7) eL(7), wheres denotes the position along the  The second potential peril hides in the freedom of choos-

loop, and the fictitious time- parametrizes the deformation g the loop(re)parametrization. Sinceis related to the time
of the loop[see Fig. 18)]. We refer to this infinitesimal step ¢ by the yet unspecified factor(s, 7), uneven distributions

version of the d?mped Newton-Raphson method as thgt the sampling points over the lodpcould arise, with the
Newton descent. , o . numerical discretization poinf%, clumping densely along

The important f_eature of t_hls equation is that a decreasing e segments df and leaving big gaps elsewhere, thus
cost functional exists. Rewriting E(L0) as degrading the numerical smoothness of the loop.

We remedy these difficulties by imposing constraints on
i(TJ—)\v)=—(5—)\v) (11) Eq. (10). In our calculation for the Kuramoto-Sivashinsky
ar ' system of Sec. V, the first difficulty is dealt with by introduc-

ing one Poincarsection, for example, by fixing one coordi-
we have nate of one of the sampling point&,(s,,7) =const. This
breaks the translational invariance along the cycle. Other
T—Av=e "(0—\v)|,—0, (120  types of constraints might be better suited to a specific prob-
lem at hand. For example, we can demand that the average
so the fictitious timer flow decreases the cost functional ~ displacement of the sampling points along the loop vanishes,
thus avoiding a spiraling descent toward the desired cycle.
1 We deal with the second potential difficulty by choosing a
FAX]=5— 3€ dX[(7 (%) —Av(%)]? (13)  particularly simple loop parametrization. So far, the param-
2m Jue etrizations is arbitrary and there is much freedom in choos-
ing the best one for our purposes. We pick siiedependent

monotomcqlly as the loop evol_ves toward the cycle. constant scaling.(s, ) =\(7). With uniform grid sizeAs,
At each iteration step the differences of the loop tangent. \ ¢ Jnd fixed: (in 9), the loop parametes=t/\ is propor-

velocities and the dynamical flow velocities are reduceohonal to timet, and the discretizatioril0) distributes the

ftl)y th?_ Newrt10n| descent. 'A%g'_’_? :]he dfictitio_usl t]zlme sampling points along the loop evenly in time. As the loop
ow alg_ni the SOph talngeg wit Lt € ynarr|1:|pa ow approaches a cycle/x/dr is numerically obtainable from
vectorg=\v, and the loopX(s,7) cL(7) [see Fig. )] £4"(10) and on the cycle the period is given bw,
converges to a genuine periodic orlpit=L () of the dy- — 2\
namical floxvxdzlvd(x). Once the gyﬁlep IS Ireach_e((jj, by Eq. Even though this paper focuses on searches for periodic
E)4)’ A(s,%) = (dt/ds)(X(s,)), and the cycle period is given s the Newton descent is a general method. With appro-
y priate modifications of boundary conditions and scaling of
5 time, Eq.(10) can be adapted to the determination of ho-
T = f w)\()«((s ))ds. moclinic or heteroclinic orbits between equilibrium points or
p H . . .
periodic orbits of a flow, or more general boundary value
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problems. Applied to two-point boundary value problems,The answer is yes, and easiest to understand in terms of the
Newton descent is similar to quasilinearizati@8] but has  Hamilton variational principle which states that classical tra-
the advantage that the free parametefs,7) are available jectories are extrema of the Hamilton principal functiamn,

for adjusting scales in the problem and that searches can lfer fixed energyE, the actionS=R+ Et)

restricted to the phase space submanifolds of interest. A
simple example of a restriction to a submanifold are searches
for cycles of a given energy, constrained to théqg,p)=E
energy shell in the phase space of a Hamiltonian system.
Furthermore, as we shall show now, the symplectic structurvhere£(q,q,t) is the Lagrangian. Given a lodp(7) we can
of Hamilton’s equations greatly reduces the dimensionalitycompute not only the tangent “velocity” vectar, but also

ty
R(erth%,to):ﬁ dt£(q(t),q(t),1),

of the submanifold that we need to consider. the local loop curvature or “acceleration” vector
0%
I1l. EXTENSIONS OF NEWTON DESCENT a= 92

In classical mechanics particle trajectories are also So'“énd indeed. as mars/derivatives as needed. Matching the
tions of a variational principle, the Hamilton variational prin- ' ’ 'y ’ 9

ciple. For example, variational methods are the key ingrediSjynamlcal acceleratioa(X) [assumed to be a function &f

ent of the Aubry-Mather theory of area-preserving twistandv(y)] \.Nith the loop “accelerati_on'ﬁ(?) results in a new
maps, discrete-time Hamiltonian dynamical systems particu(—:OSt function and the corresponding P for the evolu-

larly suited to explorations of the Kolmogorov-Arnold- tion of the loop,
Moser(KAM ) theorem. Proofs of the Aubry-Mather theorem P
[24] on the existence of quasiperiodic solutions are varia- —(3a—\%a)=—(a—\?a).
tional. It was quickly realized that the variational methods a7
can also yield reliable, high-precision computations of IongWe LUSEN2
periodic orbits of twist map models in two or more dimen-
sions, needed for KAM renormalization studi&$].

A fictitious time gradient flow for orbits of mappings,

instead ofi in order to keep the notation consis-
tent with Eq.(4), that is,t=\s. Expressed in terms of the
loop variablesX(s), the above equation becomes

similar to the one discussed in the companion pdpéf, %% ga 9% Ja g% | da % I\
was introduced by Anegeh26] for twist maps, and used by ———N— N2 | a)—
Gole[27] in his proof of the Aubry-Mather theorem. Math- ~ ¢°Sd7 ~ dv dsdr = X dr \dv ds ar

ematical bounds on the regions of stability of KAM tori are =\2a-3, (14)
notoriously restrictive compared to the numerical indica-

tions, and Falcolini and de la Llaf&0] and Tompaidig1l]  wherev=d%/\ds. Although Eq.(14) looks more compli-
have found the gradient flow formulation advantageous botiiated than Eq(10), in numerical fictitious time integrations

in studies of the analyticity domains of KAM Stability, as we are rewarded by ha\/ing to keep on|y half of the phase
well as in proving the Aubry-Mather theorem for extendedspace variables.

systems. _ o More generally, if a differential equation has the form
As far as we know, all numerical applications so far have
been to low-dimensional Hamiltonian maps, not to continu- xM=f(x,xY, .. x(MDy (15)

ous time flows. Instead of attempting to implement the least-

action variational principle as loop dynamics in a fictitious wherex®=d*x/dt%, k=1, --,m andx e RY, the same tech-

time, here we shall implement our Newton descent as a flomique can be used to match the highest derivativ@s™

that again minimizes a cost function, this time one that peandx(™,

nalizes misalignment of accelerations, the true one and the

one computed on the loop approximation to a cycle. As there

is currently no least-action formulation of loop dynamics, we

do not know what the relative computational merits of the

two kinds of variational principles are. with X(M= (9™ 9sM)X(s) calculated directly fron&(s) on
To motivate what follows on the level of everyday intu- the loop by differentiation. In loop variablégs) we have

ition, consider how the least-action periodic orbit search

works for a billiard: Wrap around a rubber band of a roughly I Toaf 9 % 2N

correct topology, and then move the points along the billiard T_)\mZ VK 9o NKgak mA™ (™ ——

o . - Js" drt k=0 ox' a1 N\"ds or

walls until the length(that is, the actionof the rubber band

is extremal(maximal or minimal under infinitesimal changes =AM (M —x(m), (16)

of the boundary poinjsNote that the extremization of action

requires onlyD configuration coordinate variations, not the wherex=x(® and x® = g*/\*é*s, k=1,---,m—1 are as-

full 2D-dimensional phase space variations. sumed. Conventionally, Eq15) is converted to a system of
Can we exploit this property of the Newtonian mechanicsmd first order differential equations, whose discretized de-

to reduce the dimensionality of our variational calculations®ivative [see Eq(17) below] are banded matrices with band-

%(’)‘((m)_ )\mx(m)) - _ (-)‘((m)_ )\mX(m)),
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width of 5md. Using Eq.(16), we need onlyd equations and mentation of the Newton descent is the inversion of the large
for the same accuracy the corresponding bandwidthnis ( matrix A in Eqg. (10). When the dimension of the dynamical
+4)d. The computing load has been greatly reduced, thghase space of EqR) is high, the inversion oA needed to
more so the largamis. Nevertheless, choice of a good initial get J%/9r takes most of the integration time, making the
loop guess and visualization of the dynamics are alwaygvolution extremely slow. This problem is partially solved if
aided by a plot of the orbit in the futhd-dimensional phase  fnite difference methods are used. The large matrithen

space, where loops cannot self-intersect and topological fegyacomes sparse and the inversion can be done far more
tures of the flow are exhibited more clearly. quickly.

IV. IMPLEMENTATION OF NEWTON DESCENT A. Numerical implementation

As the loop points satisfy a periodic boundary condition, In a discretization of a loop, numerical stability requires
it is natural to employ truncated discrete fast Fourier transaccurate discretization of loop derivatives such as
forms (FFT9 in numerical integrations of E410). Since we
are interested only in the final, stationary cyplethe accu- - _ KX (O%)
racy of the fictitious time integration is not crucial; all we as|s, ne
have to ensure is the smoothness of the loop throughout the
integration. The Euler integration with fairly large time stepsin our numerical work we use the four-point approximation
or suffices. The computationally most onerous step in imple{28]

0 8 -1 1 -8

-8 0 8 -1 1

1 -8 O 8 -1

B— 1 1
= Ton (17)

1 -8 0 -1

-1 1 -8 0 8

8 -1 1 -8 O

whereh=27/N. Here, each entry represent§dxd] ma-  are the two vector fields that we want to match everywhere
trix, 8— 81, etc., with blank spaces filled with zeros. The along the loop.a is an Nd-dimensional row vector which

two [2d X 2d] matrices imposes the constraint on the coordinate variatiohs
=(6Xq,0%5,...,0Xy). The discretized Newton desce(id)

M :( I -8l M :( -1 0 ) is an infinitesimal time step variant of the multipoifRoin-

Yo 1) 27181 1)’ caresection shooting equation for flowf20]. In formulating

_ a variational method for periodic orbit searches in a three-
located at the top right and bottom left corners take care ofimensional generalized standard map, Tompditii§ also

the periodic boundary condition. S derived an expression similar to E4.8). In order to solve
The discretized version of E@10) with a fictitious time  {o; the deformation of the loop coordinates and periog,
Euler stepdr is and &\, we need to invert the(Nd+1)x (Nd+ 1)] matrix

A~ S on the left hand side of Eq18).
A v) ( 532) :57(7\0_1)) (18) In our numerical work, this matrix is inverted using the
a 0 /\on o/ banded LU decompositiofi29] on the embedded band-
diagonal matrix, and the Woodbury formyl29] on the cy-
where clic and border terms. The LU decomposition takes most of
o the computational time and considerably slows down the fic-
A=D-MNdiadA;,A,,....Anl titious time integration. We speed up the integration by an
inversion scheme that relies on the smoothness of the flow in
with A,=A(X(s,)) defined in Eq(5), and the loop space. It goes as follows. Once we have the LU
R ) decomposition at one step, we use it to approximately invert
=(v1,00,...0n) With v,=v(X(sp)), the matrix in the next step, with accurate inversion achieved
R by iterative approximate inversiof29]. In our applications
v1=(01,09,...,0n) With 7,=0(X(s,)) we find that a single LU decomposition can be used for many
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ot evolution steps. The further we go, the more iterations athangew;— w,. In practice, one or two iterations often suf-
each step are needed to implement the inversion. After thfice to find the new cycle.
number of such iterations exceeds some given fixed maxi- A good choice of the initial loop significantly expedites

mum number, we perform another LU decomposition andhe computation, but there are more reasons why good initial
proceed as before. The number of integration steps followingsops are crucial. First of all, if we break the translational
one decomposition is an indication of the smoothness of thgyyariance by imposing a constraint suctXaés,, ) =c, we
evolution, and we adjust the integration step sizeéccord-  paye to make sure that both the initial loop and the desired
ingly: the greater the number, the blgger the step size. As th@ycle intersect this Poincanglane. Hence, the initial loop
loop approaches a cycle, the evolution becomes so SMOOW, ot he wildly different from the desired cycle. Second, in
that the step size can be brought all thg way upte 1, the_ view of Eqg. (12), the loop always evolves toward a local
full undamped Newton-Raphson iteration step. In praCtICeminimum of the cost functional13), with discretization

one can start with a small but reasonable number of pointspoints moving along th& —\v fixed direction, determined
In order to get a coarse solution of relatively low accuracy.by the initial condition. If the local minimum corresponds to

After achieving that, the refined guess loop can be con-

structed by internolating more points and used for a mord 26 of the cost functional, we obtain a true cycle of the
y poiating P %ynamical flow(2). However, if the value of the cost func-
accurate calculation in whichr can be set as large as the full

Newton stepdr=1, recovering the rapid quadratic conver- tional is not equal to zero at the mininlum while the gradient
gence of the Newton-Raphson method. is zero, Eq(18) yields a singular matri)A. In such cases the

It is essential that the smoothness of the loop is main_search has to be abar?do'ned apd restarted with a new injtial
tained throughout the calculation. We monitor the smooth/00P guess. In the periodic orbit searches of Sec. V starting
ness by checking the Fourier spectrumgf,). An un- with bl!nd |n|t|_a_l guesses(guess_es_ unaided by a symbol_lc
stable difference scheme for loop derivatives might lead tgynamics partition such local minima were encountered in
unbounded sawtooth oscillatiof@0]. A heuristic local linear 220Ut 30% of cases.
stability analysis (described in[31]) indicates that our
scheme is stable, and that the high-frequency components do C. Symmetry considerations

not generate instabilities. The system under consideration often possesses certain
symmetries. If this is the case, the symmetry should be both
feared for possible marginal eigendirections and embraced as
a guide to possible simplifications of the numerical calcula-
As in any other method, a qualitative understanding of thdion.
dynamics is a prerequisite to successful cycle searches. We If the dynamical system equatiof®) are invariant under
start by numerical integration with the dynamical syst@n  a discrete symmetry, the concept of fundamental domain
Numerical experiments reveal regions where a trajectory5,34] can be utilized to reduce the length of the initial loop
spends most of its life, giving us the first hunch as to how tovhen searching for a cycle of a given symmetry. In this case,
initialize a loop. We take the FFT of some nearly recurringwe need discretize only an irreducible segment of the loop,
orbit segment and keep only the lowest-frequency composignificantly decreasing the dimensionality of the loop repre-
nents. The inverse Fourier transform back to the phase spasentation. Other parts of the loop are replicated by symmetry
yields a smooth loop that we use as our initial guess. Sinceperations, with the full loop tiled by copies of the funda-
any generic orbit segment is not closed and might exhibitmental domain segment. The boundary conditions are not
large gaps, the Gibbs phenomenon can take the initial looperiodic any longer, but all that we need to do is modify the
so constructed quite far away from the region of interest. Weeyclic terms. Instead of usingl; andM, in Eq. (17), we use
deal with this problem by manually deforming the orbit seg-M;Q andM,Q 1, whereQ is the relevant symmetry opera-
ment into a closed loop before performing the FFT. Searchtion that maps the fundamental segment to the neighbor that
ing for longer cycles with multiple circuits requires more precedes it. In this way, a fraction of the points represent the
delicate initial conditions. The hope is that a few short cyclescycle with the same accuracy, speeding up the search consid-
can help us establish an approximate symbolic dynamicsrably.
and guesses for longer cycles can be constructed by cutting If a continuous symmetry is present, it may complicate
and gluing the short, known ones. For low-dimensional systhe situation at first glance but becomes something that we
tems, such methods yield quite good systematic initialcan take advantage of after careful checking. For example,
guesses for longer cycl¢82]. for a Hamiltonian system unstable cycles may form continu-
An alternative way to initialize the search is by utilizing ous families[35,36, with one or more members of a family
adiabatic deformations of dynamics, or the homotopy evolubelonging to a given constant energy surface. In order to
tion [33]. If the dynamical systen(2) depends on a param- cope with the marginal eigendirection associated with such a
eter u, short cycles might survive ag varies on passing continuous family, we search for a cycle on a particular en-
through a family of dynamical systems, creating in the pro-ergy surface by replacing the last row of Ed.8) by an
cess new cycles through sequences of bifurcations. Mosinergy shell constraif20]. We put one point of the loop,
short unstable cycles vary little for small changesuwofSo a  sayX,, on the constant energy surfadgX) =E and impose
cycle existing for the parameter valyg can be chosen as the constrainWH(X,) - 6X,=0, so as to keef, on the sur-
the initial trial loop for a nearby cycle surviving a small face for all 7. The integration of Eq(10) then automatically

B. Initialization and convergence
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FIG. 2. The Haon-Heiles system in a chaotic regiof@ An initial loop L(0) and (b) the unstable periodic orbip of period
T=13.1947 reached by the Newton descdr). (c) The exponential decrease of the cost functiofrfire —2.0502-+ 6.0214.

brings all other loop points to the same energy surface. Almuch, the Newton descent takes the same initial loop into

ternatively, we can look for a cycle of given fixed peridd other cycles. Figure (2) verifies that the cost function&?

by fixing A and dropping the constraint in the bottom line of decreases exponentially with slope2 throughout ther

Eq. (18). These two approaches are conjugate to each othe[0,10] integration interval, as predicted by E@.2). The

both needed in applications. In most cases, they are equiv@oints get more and more sparserdacreases, because our

lent. One exception is the harmonic oscillator for which thenumerical implementation adaptively chooses bigger and

oscillations have identical period but different energy. Notebigger step size$r.

that in both cases the translational invariance is restored, as In the Hmon-Heiles case, the acceleratiagsa, depend

we have discarded the Poincasection condition of Sec. only on the configuration variablesy. More generally, the

[1B. As explained in[9], this causes no trouble in numerical accelerations could also depend xyy. Consider as an ex-

calculations. ample the equations of motion for the restricted three-body
problem[39],

V. APPLICATIONS
X+ u X—1+u

We have checked that the iteration of E@.8) yields X=2y+x—(1—pu) 3 TAT 3
quickly and robustly the short unstable cycles for standard 1 2
models of low-dimensional dissipative flows such as the
Rassler sy_sten1i37j. More daunting challenges are searches J=—2x+y—(1—pu) Xg_MZE (20)
for cycles in Hamiltonian flows and for spatiotemporally pe- r ra

riodic solutions of PDEs. In all numerical examples that fol-
low, the convergence condition B2<10°. where 1= \(x+u)?+y% 1,=\(x=1+u)?+y% These

equations describe the motion of a test particle in a rotating
frame under the influence of the gravitational force of two
heavy bodies with masses 1 apak1 fixed at(—u, 0) and

First, we test the Hamiltonian version of the Newton de-(1— x,0) in the(x, y) coordinate frame. The stationary solu-
scent derived in Sec. Il by applying the method to twotions of Eq.(20) are called the Lagrange points, correspond-
Hamiltonian systems, both with two degrees of freedom. Inng to a circular motion of the test particle in phase with the
both cases, our initial loop guesses are rather arbitrary contotation of the heavy bodies. The periodic solutions in the
binations of trigonometric functions. Nevertheless, the obrotating frame correspond to periodic or quasiperiodic mo-
served convergence is fast. tion of the test particle in the inertial frame. Figure 3 shows

The Heon-Heiles systerfi38] is a standard model in ce- an initial loop and the cycle to which it converges, in the
lestial mechanics, described by the Hamiltonian

A. Hénon-Heiles system and restricted three-body problem

1 y2 0.3 0.3
H=§(p§+p§+x2+y2)+x2y—§. (19
0.1 0.1

It has time reversal symmetry and a threefold discrete spatial > >
symmetry. Figure 2 shows a typical application of Etd), =01 0.1
with the Newton descent search restricted to the configura-
tion space. The initial loop, Fig.(2), is a rather coarse initial -03 -0.3
guess. We arbitrarily fix the scaling=2.1, that is, we search @ 07 o o 0.7 0o

for a cyclep of the fixed periodT ,=13.1947, with no con-
straint on the energy. Figure®) shows the cycle found by FIG. 3. (a) An initial loop L(0), and(b) the unstable periodic
the Newton descent, with enerdy=0.1794, and the full orbit p of period T,=2.7365 reached by the Newton descéi),
discrete symmetry of the Hamiltonian. This cycle persistsor the restricted three-body problef@0) in the chaotic regime,
adiabatically for a small range of values)afwith A changed  «=0.04.
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rotating frame. Although the cycle looks simple, the Newton o> 0.2
descent requires advancing in smétisteps in order for the \ /\
initial loop to converge to it. -0.2 | -0.2 j ]

In order to successfully apply the Hamiltonian version of /
the Newton descenfl4), we have to ensure that the test ®© -06
particle keeps a finite distance from the origin. If a cycle M
passes very close to one of the heavy bodies, the acceleratio - -
can become so large that our scheme of uniformly distribut-
ing the loop points in time might fail to represent the loop
faithfully. Another distribution scheme is required in this
case, for example, making the density of points proportional
to the magnitude of acceleration.

-1 ? -1.4
-1. . X 1. -1.2 -0.8 -0.4
(a) a, (b) a,

D
L
n
1
o
=]
1
o
'S
|
o

B. Periodic orbits of Kuramoto-Sivashinsky system

The Kuramoto-Sivashinsky equation arises as an ampli-
tude equation for interfacial instability in a variety of con-
texts[40,41. In one-dimensional space, it reads

U= (U?) 3 — Uy — PUyynxs (22) (© oo (d) a

wherev is a “superviscosity” parameter that controls the rate ~ FIG. 4. The Kuramoto-Sivashinsky system in a spatiotemporally
of dissipation and{?), is the nonlinear convection term. As turbulent regime (viscosity parameter,=0.015, d=32 Fourier
v decreases, the system undergoes a series of bifurcatiorfode truncation (a) An initial guessL, , and(b) the periodic orbit
leading to increasingly turbulent, spatiotemporally chaoticP1 Of period T,=0.744892 reached by the Newton desceo.
dynamics. Anc_>ther initial guesd.,, and(d) the resulting periodic orbip, of

If we impose the periodic boundary conditiom(t,x periodT,=1.184 668.

+2m)=u(t,x) and choose to study only the Qdd sc_"u“cmshinder applications of conventional cycle-search routines, in
u(=x,t)=—-u(xt), u(x,t) can be expanded in a discrete s setting our variational method works well. We design
spatial Fourier serief32], rather arbitrary initial loops from numerical trajectory seg-

0 ments, and the calculation proceeds as before, except that
> at)elkx (22)  how a smallér has to be used initially to ensure numerical
=—o stability. Topologically different loops are very likely to re-
sult in different cycles, while some initial loop guesses may
lead to local nonzero minima of the cost functiofidl. As
explained in Sec. 1V, in such cases the method diverges, and

u(x,t)=i
k

wherea_,=—a,e R. In terms of the Fourier components,
the PDE(21) becomes an infinite ladder of ODES:

o the search is restarted with a new initial loop guess.
a=(k2— vk%a,—k E Ay - (23) 'Two initial Io_op guesses are displayed in Fig. 4, along
m=— with the two periodic orbits detected by the Newton descent.

In discretization of the initial loops, each point has to be
In numerical simulations we work with the Galerkin trunca- specified in alld dimensions; here the coordinatgs, ,a,}
tions of the Fourier series since in the neighborhood of thgyre picked so that topological similarity between initial and
strange attractor the magnitudeagfdecreases very fast with fina joops is visually easy to identify. Other projections from
increasingk, high-frequency modes playing a negligible role =32 dimensions to subsets of two coordinates appear to
in the asymptotic dynamidsi2]. In this way Galerkin trun-  make the identification harder, if not impossible. In both cal-
cations reduce the dynamics fo a finite but large number ofjations, we molded segments of typical trajectories into
ODEs. We work withd=32 dimensions in our numerical smooth closed loops by the Fourier filtering method of Sec.
calculations. In Ref|32], multipoint shooting was success- |y, As the desired orbit becomes longer and more complex,
fully applied to obtain periodic orbits close to the onset of jgre sampling points are needed to represent the loop. We
spatiotemporal chaosy&0.03). In this regime, our method geN=512 points to represent the loop in tha,(b) case
is so stable that big time stefds can be employed even at angN=1024 points in thec),(d) case. The space-time evo-
the initial guesses, leading to extremely fast convergence. Weition of u(x,t) for these two unstable spatiotemporally pe-
attribute this robustness to the simplicity of the structure ofjodic solutions is displayed in Fig. 5. Ag(x,t) is antisym-

the attractor at high viscosity values. metric on[—, 7], it suffices to display the solutions on the
The challenge comes with decreasingwith the dynam- o [0,7] interval.

ics turning more and more turbulent. Alreadyrat0.015 the
system is moderately turbulent, and the phase space portraits
of the dynamics reveal a complex labyrinth of “eddies” of
different scales and orientations. While the highly unstable In order to cope with the difficulty of finding periodic
nature of orbits and intricate structure of the invariant sefborbits in high-dimensional chaotic flows, we have devised

VI. DISCUSSION
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Kuramoto-Sivashinsky system, the mtm-Heiles system,
and the restricted three-body problem.

Our method uses information from a large number of
points in phase space, with the global topology of the desired
cycle protected by insistence on smoothness and a uniform
discretization of the loop. The method is quite robust in prac-
tice.

The numerical results presented here are only a proof of
principle. We do not know to what periodic orbit the flow

FIG. 5. Level plot of the space-time evolutiaiix,t) for the two ~ (10) will evolve for a given dynamical system and a given
spatiotemporally periodic solutions of Fig. @) the evolution of  initial loop. Empirically, the flow goes toward the “nearest”
p;, with the start of a repeat after the cycle perioky  periodic orbit, with the largest topological resemblance. Each
=0.744 892, andb) one full periodT,=1.184 668 in the evolution particular application will still require much work in order to
of p,. elucidate and enumerate relevant topological structures. The
hope is that the short spatiotemporally periodic solutions re-
vealed by the Newton descent searches will serve as the ba-
%ic building blocks for systematic investigations of chaotic
and perhaps even “turbulent” dynamics.

the Newton descent methodn infinitesimal step variant of
the damped Newton-Raphson method. Our main result is th
PDE (10) which solves the variational problem of minimiz-
ing the cost functiona{13). This equation describes the fic-
titious time 7 flow in the space of loops that decreases the
cost functional at a uniform exponential rdtee Eq.(12)].
Variants of the method are presented for special classes of We would like to thank Cristel Chandre for a careful read-
systems, such as Hamiltonian systems. An efficient integraing of the manuscript and numerous suggestions, and Rafael
tion scheme for the PDE is devised and tested on thele la Llave for bringing Refd.10,11] to our attention.
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